(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
terms(N) → cons(recip(sqr(N)), n__terms(n__s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
s(X) → n__s(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
activate(n__terms(X)) →+ cons(recip(sqr(activate(X))), n__terms(n__s(activate(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,0].
The pumping substitution is [X / n__terms(X)].
The result substitution is [ ].
The rewrite sequence
activate(n__terms(X)) →+ cons(recip(sqr(activate(X))), n__terms(n__s(activate(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0].
The pumping substitution is [X / n__terms(X)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
terms(N) → cons(recip(sqr(N)), n__terms(n__s(N)))
sqr(0') → 0'
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0') → 0'
dbl(s(X)) → s(s(dbl(X)))
add(0', X) → X
add(s(X), Y) → s(add(X, Y))
first(0', X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
s(X) → n__s(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
terms(N) → cons(recip(sqr(N)), n__terms(n__s(N)))
sqr(0') → 0'
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0') → 0'
dbl(s(X)) → s(s(dbl(X)))
add(0', X) → X
add(s(X), Y) → s(add(X, Y))
first(0', X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
s(X) → n__s(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
Types:
terms :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
cons :: recip → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
recip :: n__s:n__terms:cons:0':nil:n__first → recip
sqr :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
n__terms :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
n__s :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
0' :: n__s:n__terms:cons:0':nil:n__first
s :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
add :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
dbl :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
first :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
nil :: n__s:n__terms:cons:0':nil:n__first
n__first :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
activate :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
hole_n__s:n__terms:cons:0':nil:n__first1_0 :: n__s:n__terms:cons:0':nil:n__first
hole_recip2_0 :: recip
gen_n__s:n__terms:cons:0':nil:n__first3_0 :: Nat → n__s:n__terms:cons:0':nil:n__first
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
sqr,
add,
dbl,
activateThey will be analysed ascendingly in the following order:
add < sqr
dbl < sqr
(8) Obligation:
TRS:
Rules:
terms(
N) →
cons(
recip(
sqr(
N)),
n__terms(
n__s(
N)))
sqr(
0') →
0'sqr(
s(
X)) →
s(
add(
sqr(
X),
dbl(
X)))
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
first(
0',
X) →
nilfirst(
s(
X),
cons(
Y,
Z)) →
cons(
Y,
n__first(
X,
activate(
Z)))
terms(
X) →
n__terms(
X)
s(
X) →
n__s(
X)
first(
X1,
X2) →
n__first(
X1,
X2)
activate(
n__terms(
X)) →
terms(
activate(
X))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
n__first(
X1,
X2)) →
first(
activate(
X1),
activate(
X2))
activate(
X) →
XTypes:
terms :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
cons :: recip → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
recip :: n__s:n__terms:cons:0':nil:n__first → recip
sqr :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
n__terms :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
n__s :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
0' :: n__s:n__terms:cons:0':nil:n__first
s :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
add :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
dbl :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
first :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
nil :: n__s:n__terms:cons:0':nil:n__first
n__first :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
activate :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
hole_n__s:n__terms:cons:0':nil:n__first1_0 :: n__s:n__terms:cons:0':nil:n__first
hole_recip2_0 :: recip
gen_n__s:n__terms:cons:0':nil:n__first3_0 :: Nat → n__s:n__terms:cons:0':nil:n__first
Generator Equations:
gen_n__s:n__terms:cons:0':nil:n__first3_0(0) ⇔ 0'
gen_n__s:n__terms:cons:0':nil:n__first3_0(+(x, 1)) ⇔ cons(recip(0'), gen_n__s:n__terms:cons:0':nil:n__first3_0(x))
The following defined symbols remain to be analysed:
add, sqr, dbl, activate
They will be analysed ascendingly in the following order:
add < sqr
dbl < sqr
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol add.
(10) Obligation:
TRS:
Rules:
terms(
N) →
cons(
recip(
sqr(
N)),
n__terms(
n__s(
N)))
sqr(
0') →
0'sqr(
s(
X)) →
s(
add(
sqr(
X),
dbl(
X)))
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
first(
0',
X) →
nilfirst(
s(
X),
cons(
Y,
Z)) →
cons(
Y,
n__first(
X,
activate(
Z)))
terms(
X) →
n__terms(
X)
s(
X) →
n__s(
X)
first(
X1,
X2) →
n__first(
X1,
X2)
activate(
n__terms(
X)) →
terms(
activate(
X))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
n__first(
X1,
X2)) →
first(
activate(
X1),
activate(
X2))
activate(
X) →
XTypes:
terms :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
cons :: recip → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
recip :: n__s:n__terms:cons:0':nil:n__first → recip
sqr :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
n__terms :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
n__s :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
0' :: n__s:n__terms:cons:0':nil:n__first
s :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
add :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
dbl :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
first :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
nil :: n__s:n__terms:cons:0':nil:n__first
n__first :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
activate :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
hole_n__s:n__terms:cons:0':nil:n__first1_0 :: n__s:n__terms:cons:0':nil:n__first
hole_recip2_0 :: recip
gen_n__s:n__terms:cons:0':nil:n__first3_0 :: Nat → n__s:n__terms:cons:0':nil:n__first
Generator Equations:
gen_n__s:n__terms:cons:0':nil:n__first3_0(0) ⇔ 0'
gen_n__s:n__terms:cons:0':nil:n__first3_0(+(x, 1)) ⇔ cons(recip(0'), gen_n__s:n__terms:cons:0':nil:n__first3_0(x))
The following defined symbols remain to be analysed:
dbl, sqr, activate
They will be analysed ascendingly in the following order:
dbl < sqr
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol dbl.
(12) Obligation:
TRS:
Rules:
terms(
N) →
cons(
recip(
sqr(
N)),
n__terms(
n__s(
N)))
sqr(
0') →
0'sqr(
s(
X)) →
s(
add(
sqr(
X),
dbl(
X)))
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
first(
0',
X) →
nilfirst(
s(
X),
cons(
Y,
Z)) →
cons(
Y,
n__first(
X,
activate(
Z)))
terms(
X) →
n__terms(
X)
s(
X) →
n__s(
X)
first(
X1,
X2) →
n__first(
X1,
X2)
activate(
n__terms(
X)) →
terms(
activate(
X))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
n__first(
X1,
X2)) →
first(
activate(
X1),
activate(
X2))
activate(
X) →
XTypes:
terms :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
cons :: recip → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
recip :: n__s:n__terms:cons:0':nil:n__first → recip
sqr :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
n__terms :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
n__s :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
0' :: n__s:n__terms:cons:0':nil:n__first
s :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
add :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
dbl :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
first :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
nil :: n__s:n__terms:cons:0':nil:n__first
n__first :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
activate :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
hole_n__s:n__terms:cons:0':nil:n__first1_0 :: n__s:n__terms:cons:0':nil:n__first
hole_recip2_0 :: recip
gen_n__s:n__terms:cons:0':nil:n__first3_0 :: Nat → n__s:n__terms:cons:0':nil:n__first
Generator Equations:
gen_n__s:n__terms:cons:0':nil:n__first3_0(0) ⇔ 0'
gen_n__s:n__terms:cons:0':nil:n__first3_0(+(x, 1)) ⇔ cons(recip(0'), gen_n__s:n__terms:cons:0':nil:n__first3_0(x))
The following defined symbols remain to be analysed:
sqr, activate
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol sqr.
(14) Obligation:
TRS:
Rules:
terms(
N) →
cons(
recip(
sqr(
N)),
n__terms(
n__s(
N)))
sqr(
0') →
0'sqr(
s(
X)) →
s(
add(
sqr(
X),
dbl(
X)))
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
first(
0',
X) →
nilfirst(
s(
X),
cons(
Y,
Z)) →
cons(
Y,
n__first(
X,
activate(
Z)))
terms(
X) →
n__terms(
X)
s(
X) →
n__s(
X)
first(
X1,
X2) →
n__first(
X1,
X2)
activate(
n__terms(
X)) →
terms(
activate(
X))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
n__first(
X1,
X2)) →
first(
activate(
X1),
activate(
X2))
activate(
X) →
XTypes:
terms :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
cons :: recip → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
recip :: n__s:n__terms:cons:0':nil:n__first → recip
sqr :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
n__terms :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
n__s :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
0' :: n__s:n__terms:cons:0':nil:n__first
s :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
add :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
dbl :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
first :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
nil :: n__s:n__terms:cons:0':nil:n__first
n__first :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
activate :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
hole_n__s:n__terms:cons:0':nil:n__first1_0 :: n__s:n__terms:cons:0':nil:n__first
hole_recip2_0 :: recip
gen_n__s:n__terms:cons:0':nil:n__first3_0 :: Nat → n__s:n__terms:cons:0':nil:n__first
Generator Equations:
gen_n__s:n__terms:cons:0':nil:n__first3_0(0) ⇔ 0'
gen_n__s:n__terms:cons:0':nil:n__first3_0(+(x, 1)) ⇔ cons(recip(0'), gen_n__s:n__terms:cons:0':nil:n__first3_0(x))
The following defined symbols remain to be analysed:
activate
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol activate.
(16) Obligation:
TRS:
Rules:
terms(
N) →
cons(
recip(
sqr(
N)),
n__terms(
n__s(
N)))
sqr(
0') →
0'sqr(
s(
X)) →
s(
add(
sqr(
X),
dbl(
X)))
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
first(
0',
X) →
nilfirst(
s(
X),
cons(
Y,
Z)) →
cons(
Y,
n__first(
X,
activate(
Z)))
terms(
X) →
n__terms(
X)
s(
X) →
n__s(
X)
first(
X1,
X2) →
n__first(
X1,
X2)
activate(
n__terms(
X)) →
terms(
activate(
X))
activate(
n__s(
X)) →
s(
activate(
X))
activate(
n__first(
X1,
X2)) →
first(
activate(
X1),
activate(
X2))
activate(
X) →
XTypes:
terms :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
cons :: recip → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
recip :: n__s:n__terms:cons:0':nil:n__first → recip
sqr :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
n__terms :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
n__s :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
0' :: n__s:n__terms:cons:0':nil:n__first
s :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
add :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
dbl :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
first :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
nil :: n__s:n__terms:cons:0':nil:n__first
n__first :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
activate :: n__s:n__terms:cons:0':nil:n__first → n__s:n__terms:cons:0':nil:n__first
hole_n__s:n__terms:cons:0':nil:n__first1_0 :: n__s:n__terms:cons:0':nil:n__first
hole_recip2_0 :: recip
gen_n__s:n__terms:cons:0':nil:n__first3_0 :: Nat → n__s:n__terms:cons:0':nil:n__first
Generator Equations:
gen_n__s:n__terms:cons:0':nil:n__first3_0(0) ⇔ 0'
gen_n__s:n__terms:cons:0':nil:n__first3_0(+(x, 1)) ⇔ cons(recip(0'), gen_n__s:n__terms:cons:0':nil:n__first3_0(x))
No more defined symbols left to analyse.